Nonmarket Valuation of Climate Change and Ocean Acidification Impacts to Marine Resources

John C. Whitehead
Department of Economics
Appalachian State University
Boone, NC

Nonmarket Values

Nonmarket Values for Coral Reefs

Use values

- Willingness to pay to avoid climate change to marine resources due to use of these resources on-site
- Direct use
 - Diving
 - Snorkeling
 - Viewing
- Indirect use
 - Fishing (coral reef habitat and nursery functions)

Nonuse (aka, passive use) values

- Willingness to pay to avoid climate change to marine resources without the intent to use these resources on-site
- Motives
 - Altruism (WTP today for Δq today)
 - Ecological ethic (WTP today for Δq today)
 - Bequests (WTP today for Δq in the future)

Measurement of Total Economic Value

	Types of Value			
Valuation Methods	Use	Nonuse		
Revealed Preference	Yes	No		
Stated Preference	Yes	Yes		

Revealed Preference Methods

- Types
 - Hedonic price method
 - Property values
 - Averting behavior method
 - Health values
 - Travel cost method
 - Recreation values
 - Single site TCM
 - Multiple site RUM
 - NFI, PF, GR (generally not appropriate)

Stated Preference Methods

Types

- Contingent valuation
 - Used to estimate UV, NUV and TEV
 - difficult to avoid double counting in the case of climate change
 - WTP to climate change policy = bequest values
- Choice experiments
 - Similar values as CVM Use to estimate UV, NUV and TEV
 - can be used to separate marine values from total values of climate change policy
- Contingent behavior
 - Used to estimate recreation and other UVs

RP-SP Methods

- Problems with both RP and SP Methods
- Joint estimation of RP-SP data can mitigate some of these problems
- TCM/RUM with SP methods is used to estimate use and nonuse values

Climate Change and Nonmarket Values

Literature

- RP: Spatial variation in climate variables
 - Mendelsohn and Markowsi, 1999
 - Loomis and Crespi, 1999
 - Ahn, et al., 2000
 - Pendleton and Mendelsohn, 1998
- RP: Temporal variation in climate variables
 - Englin and Moeltner, 2004
 - Carter and Letson, 2009
- SP: Richardson and Loomis, 2004

A reduced form damage function

- Data
 - NSRE (1990, 2000)
 - NSFHWAR (every 5 years)
- Recreation Days = f(X; temp, precip, etc)

Saltwater Fishing Participation

Linear probability model							
Variable	Estimate	t-value	3F	7F			
Intercept	1.9467	27.42					
income	-0.0009	-9.45					
white	-0.0379	-4.20					
male	-0.1035	-15.42					
age	0.0013	5.56					
educ	0.0046	3.11					
hhnum	-0.0087	-3.13					
under6	-0.0002	-0.03					
metro	-0.0315	-3.82					
jantemp	-0.0022	-5.90	-0.00666	-0.01554			
jultemp	0.0017	1.76	0.00504	0.01176			
janpcp	-0.0063	-3.16					
julpcp	-0.0194	-7.62					
			-0.00162	-0.00378			

Saltwater Fishing Days

Negative Binor				
Variable	Estimate	t-value	3F	7F
Intercept	2.4058	3.83		
income	0.0002	0.22		
white	-0.0609	-0.71		
male	0.24	3.93		
age	0.0031	1.35		
educ	-0.0686	-4.94		
hhnum	-0.068	-3.00		
under6	0.0419	0.83		
metro	0.0358	0.47		
jantemp	-0.0044	-1.22	-0.0132	-0.0308
jultemp	0.0128	1.47	0.0384	0.0896
janpcp	-0.0265	-1.46		
julpcp	0.117	5.74		
			0.0252	0.0588

A more structural damage function

- MRFSS data
 - temporal variation
 - Spatial variation
- Climate change would affect species composition and potential fishing days

Marine recreational fishing and climate change

- Household production model
 - -HCKR = f(X; cs, ts)
 - Changes in season length
 - Changes in species composition
- Participation / Site selection model
 - -Y = f(TC, HCKR; cs, ts)
- Estimate WTP with simulated changes of climate change

Conclusions

- No study to date explicitly addresses nonmarket valuation of climate change and marine resources
 - WTP review finds no mention of marine values
 - Is it insignificant or missing?
- Meta-analyses could be used in a benefit transfer study
 - Coral reef recreation values
 - Outdoor recreation values
 - Recreational catch values
- But, behavioral response to climate change is missing

Future Research

- All sorts of studies are needed: RP, SP; TEV, UV, NUV
- Most promising with existing RP data
 - Reduced form
 - More structural
- New studies
 - SP data
 - CVM difficult to avoid double counting
 - CE can differentiate between marine and other values
 - CB behavioral response to climate change
 - RP-SP joint estimation
 - Can differentiate between UV and NUV